Calculus Of A Single Variable 8th Edition Worked Out Solutions
Single Variable Calculus Early Transcendentals 8th Edition Stewart Solutions Manual, 2019.
Chapter P
Preparation For Calculus
P.1 | Graphs and Models | Exercises | p.8 |
P.2 | Linear Models and Rates of Change | Exercises | p.16 |
P.3 | Functions and Their Graphs | Exercises | p.27 |
P.4 | Fitting Models to Data | Exercises | p.34 |
Review Exercises | p.37 | ||
Problem Solving | p.39 |
Chapter 1
Limits And Their Properties
1.1 | A Preview of Calculus | Exercises | p.47 |
1.2 | Finding Limits Graphically and Numerically | Exercises | p.54 |
1.3 | Evaluating Limits Analytically | Exercises | p.67 |
1.4 | Continuity and One-Sided Limits | Exercises | p.78 |
1.5 | Infinite Limits | Exercises | p.88 |
Review Exercises | p.91 | ||
Problem Solving | p.93 |
Chapter 2

Differentiation
2.1 | The Derivative and the Tangent Line Problem | Exercises | p.103 |
2.2 | Basic Differentiation Rules and Rates of Change | Exercises | p.115 |
2.3 | Product and Quotient Rules and Higher-Order Derivatives | Exercises | p.126 |
2.4 | The Chain Rule | Exercises | p.137 |
2.5 | Implicit Differentiation | Exercises | p.146 |
2.6 | Related Rates | Exercises | p.154 |
Review Exercises | p.158 | ||
Problem Solving | p.161 |
Chapter 3
Applications Of Differentiation
3.1 | Extrema on an Interval | Exercises | p.169 |
3.2 | Rolle's Theorem and the Mean Value Theorem | Exercises | p.176 |
3.3 | Increasing and Decreasing Functions and the First Derivative Test | Exercises | p.186 |
3.4 | Concavity and the Second Derivative Test | Exercises | p.195 |
3.5 | Limits at Infinity | Exercises | p.205 |
3.6 | A Summary of Curve Sketching | Exercises | p.215 |
3.7 | Optimization Problems | Exercises | p.223 |
3.8 | Newton's Method | Exercises | p.233 |
3.9 | Differentials | Exercises | p.240 |
Review Exercises | p.242 | ||
Problem Solving | p.245 |
Chapter 4
Integration
4.1 | Antiderivatives and Indefinite Integration | Exercises | p.255 |
4.2 | Area | Exercises | p.267 |
4.3 | Riemann Sums and Definite Integrals | Exercises | p.278 |
4.4 | The Fundamental Theorem of Calculus | Exercises | p.291 |
4.5 | Integration by Substitution | Exercises | p.304 |
4.6 | Numerical Integration | Exercises | p.314 |
Review Exercises | p.316 | ||
Problem Solving | p.319 |
Chapter 5
Logarithmic, Exponential, And Other Transcendental Functions
5.1 | The Natural Logarithmic Function: Differentiation | Exercises | p.329 |
5.2 | The Natural Logarithmic Function: Integration | Exercises | p.338 |
5.3 | Inverse Functions | Exercises | p.347 |
5.4 | Exponential Functions: Differentiation and Integration | Exercises | p.356 |
5.5 | Bases Other Than e and Applications | Exercises | p.366 |
5.6 | Inverse Trigonometric Functions: Differentiation | Exercises | p.377 |
5.7 | Inverse Trigonometric Functions: Integration | Exercises | p.385 |
5.8 | Hyperbolic Functions | Exercises | p.396 |
Review Exercises | p.399 | ||
Problem Solving | p.401 |
Chapter 6
Differential Equations
6.1 | Slope Fields and Euler's Method | Exercises | p.409 |
6.2 | Differential Equations: Growth and Decay | Exercises | p.418 |
6.3 | Separation of Variables and the Logistic Equation | Exercises | p.429 |
6.4 | First-Order Linear Differential Equations | Exercises | p.438 |
Review Exercises | p.441 | ||
Problem Solving | p.443 |
Chapter 7
Applications Of Integration
7.1 | Area of a Region Between Two Curves | Exercises | p.452 |
7.2 | Volume: The Disk Method | Exercises | p.463 |
7.3 | Volume: The Shell Method | Exercises | p.472 |
7.4 | Arc Length and Surfaces of Revolution | Exercises | p.483 |
7.5 | Work | Exercises | p.493 |
7.6 | Moments, Centers of Mass, and Centroids | Exercises | p.504 |
7.7 | Fluid Pressure and Fluid Force | Exercises | p.511 |
Review Exercises | p.513 | ||
Problem Solving | p.515 |
Chapter 8
Integration Techniques, L'Hopital's Rule, And Improper Integrals
8.1 | Basic Integration Rules | Exercises | p.522 |
8.2 | Integration by Parts | Exercises | p.531 |
8.3 | Trigonometric Integrals | Exercises | p.540 |
8.4 | Trigonometric Substitution | Exercises | p.549 |
8.5 | Partial Fractions | Exercises | p.559 |
8.6 | Integration by Tables and Other Integration Techniques | Exercises | p.565 |
8.7 | Indeterminate Forms and L'H么pital's Rule | Exercises | p.574 |
8.8 | Improper Integrals | Exercises | p.585 |
Review Exercises | p.589 | ||
Problem Solving | p.591 |
Chapter 9
Infinite Series
9.1 | Sequences | Exercises | p.602 |
9.2 | Series and Convergence | Exercises | p.612 |
9.3 | The Integral Test and p-Series | Exercises | p.620 |
9.4 | Comparisons of Series | Exercises | p.628 |
9.5 | Alternating Series | Exercises | p.636 |
9.6 | The Ratio and Root Tests | Exercises | p.645 |
9.7 | Taylor Polynomials and Approximations | Exercises | p.656 |
9.8 | Power Series | Exercises | p.666 |
9.9 | Representation of Functions by Power Series | Exercises | p.674 |
9.10 | Taylor and Maclaurian Series | Exercises | p.685 |
Review Exercises | p.688 | ||
Problem Solving | p.691 |
Chapter 10
Conics, Parametric Equations, And Polar Coordinates
10.1 | Conics and Calculus | Exercises | p.704 |
10.2 | Plane Curves and Parametric Equations | Exercises | p.716 |
10.3 | Parametric Equations and Calculus | Exercises | p.725 |
10.4 | Polar Coordinates and Polar Graphs | Exercises | p.736 |
10.5 | Area and Arc Length in Polar Coordinates | Exercises | p.745 |
10.6 | Polar Equations of Conics and Kepler's Laws | Exercises | p.753 |
Review Exercises | p.756 | ||
Problem Solving | p.759 |
Chapter 1
Functions And Limits
1.1 | Four Ways to Represent a Function | Exercises | p.19 |
1.2 | Mathematical Models: A Catalog of Essential Functions | Exercises | p.33 |
1.3 | New Functions from Old Functions | Exercises | p.42 |
1.4 | The Tangent and Velocity Problems | Exercises | p.49 |
1.5 | The Limit of a Function | Exercises | p.59 |
1.6 | Calculating Limits Using the Limit Laws | Exercises | p.69 |
1.7 | The Precise Definition of a Limit | Exercises | p.80 |
1.8 | Continuity | Exercises | p.90 |
Concept Check | p.93 | ||
True-False Quiz | p.94 | ||
Review Exercises | p.95 | ||
Problem Solving | p.102 |
Chapter 2
Derivatives
2.1 | Derivatives and Rates of Change | Exercises | p.110 |
2.2 | The Derivative as a Function | Exercises | p.122 |
2.3 | Differentiation Formulas | Exercises | p.136 |
2.4 | Derivatives of Trigonometric Functions | Exercises | p.146 |
2.5 | The Chain Rule | Exercises | p.154 |
2.6 | Implicit Differentiation | Exercises | p.161 |
2.7 | Rates of Change in the Natural and Social Sciences | Exercises | p.173 |
2.8 | Related Rates | Exercises | p.180 |
2.9 | Linear Approximations and Differentials | Exercises | p.187 |
Concept Check | p.190 | ||
True-False Quiz | p.190 | ||
Review Exercises | p.191 | ||
Problems Plus | p.194 |
Chapter 3
Applications Of Differentiation
3.1 | Maximum and Minimum Values | Exercises | p.204 |
3.2 | The Mean Value Theorem | Exercises | p.212 |
3.3 | How Derivatives Affect the Shape of a Graph | Exercises | p.220 |
3.4 | Limits at Infinity; Horizontal Asymptotes | Exercises | p.234 |
3.5 | Summary of Curve Sketching | Exercises | p.242 |
3.6 | Graphing with Calculus and Calculators | Exercises | p.249 |
3.7 | Optimization Problems | Exercises | p.256 |
3.8 | Newton's Method | Exercises | p.267 |
3.9 | Antiderivatives | Exercises | p.273 |
Concept Check | p.275 | ||
True-False Quiz | p.276 | ||
Review Exercises | p.276 | ||
Problem Solving | p.280 |
Chapter 4
Integrals

4.1 | Areas and Distances | Exercises | p.293 |
4.2 | The Definite Integral | Exercises | p.306 |
4.3 | The Fundamental Theorem of Calculus | Exercises | p.318 |
4.4 | Indefinite Integrals and the Net Change Theorem | Exercises | p.326 |
4.5 | The Substitution Rule | Exercises | p.335 |
Concept Check | p.337 | ||
True-False Quiz | p.338 | ||
Review Exercises | p.338 | ||
Problems Plus | p.342 |
Chapter 5
Applications Of Integration
5.1 | Areas Between Curves | Exercises | p.349 |
5.2 | Volumes | Exercises | p.360 |
5.3 | Volumes by Cylindrical Shells | Exercises | p.366 |
5.4 | Work | Exercises | p.371 |
5.5 | Average Value of a Function | Exercises | p.375 |
Concept Check | p.377 | ||
Review Exercises | p.378 | ||
Problems Plus | p.380 |
Chapter 6
Inverse Functions: Exponential, Logarithmic, And Inverse Trigonometric …
6.1 | Inverse Functions | Exercises | p.390 |
6.2 | Exponential Functions and Their Derivatives | Exercises | p.401 |
6.3 | Logarithmic Functions | Exercises | p.408 |
6.4 | Derivatives of Logarithmic Functions | Exercises | p.418 |
6.2* | The Natural Logarithmic Function | Exercises | p.428 |
6.3* | The Natural Exponential Function | Exercises | p.434 |
6.4* | General Logarithmic and Exponential Functions | Exercises | p.444 |
6.5 | Exponential Growth and Decay | Exercises | p.451 |
6.6 | Inverse Trigonometric Functions | Exercises | p.459 |
6.7 | Hyperbolic Functions | Exercises | p.467 |
6.8 | Indeterminate Forms and l'Hospital's Rule | Exercises | p.477 |
Concept Check | p.480 | ||
True-False Quiz | p.481 | ||
Review Exercises | p.481 | ||
Problems Plus | p.486 |
Chapter 7
Techniques Of Integration
7.1 | Integration by Parts | Exercises | p.492 |
7.2 | Trigonometric Integrals | Exercises | p.500 |
7.3 | Trigonometric Substitution | Exercises | p.507 |
7.4 | Integration of Rational Functions by Partial Fractions | Exercises | p.516 |
7.5 | Strategy for Integration | Exercises | p.523 |
7.6 | Integration Using Tables and Computer Algebra Systems | Exercises | p.528 |
7.7 | Approximate Integration | Exercises | p.540 |
7.8 | Improper Integrals | Exercises | p.551 |
Concept Check | p.553 | ||
True-False Quiz | p.554 | ||
Review Exercises | p.554 | ||
Problems Plus | p.558 |
Chapter 8
Further Applications Of Integration
8.1 | Arc Length | Exercises | p.567 |
8.2 | Area of a Surface of Revolution | Exercises | p.574 |
8.3 | Applications to Physics and Engineering | Exercises | p.584 |
8.4 | Applications to Economics and Biology | Exercises | p.590 |
8.5 | Probability | Exercises | p.597 |
Concept Check | p.599 | ||
Review Exercises | p.599 | ||
Problems Plus | p.601 |
Chapter 9
Differential Equations
9.1 | Modeling with Differential Equations | Exercises | p.608 |
9.2 | Direction FIelds and Euler's Method | Exercises | p.616 |
9.3 | Separable Equations | Exercises | p.624 |
9.4 | Models for Population Growth | Exercises | p.637 |
9.5 | Linear Equations | Exercises | p.644 |
9.6 | Predator-Prey Systems | Exercises | p.651 |
Concept Check | p.653 | ||
True-False Quiz | p.653 | ||
Review Exercises | p.654 | ||
Problems Plus | p.657 |
Chapter 10
Parametric Equations And Polar Coordinates
10.1 | Curves Defined by Parametric Equations | Exercises | p.665 |
10.2 | Calculus with Parametric Curves | Exercises | p.675 |
10.3 | Polar Coordinates | Exercises | p.686 |
10.4 | Areas and Lengths in Polar Coordinates | Exercises | p.692 |
10.5 | Conic Sections | Exercises | p.700 |
10.6 | Conic Sections in Polar Coordinates | Exercises | p.708 |
Concept Check | p.709 | ||
True-False Quiz | p.709 | ||
Review Exercises | p.710 | ||
Problems Plus | p.712 |
Chapter 11
Infinite Sequences And Series
11.1 | Sequences | Exercises | p.724 |
11.2 | Series | Exercises | p.735 |
11.3 | The Integral Test and Estimates of Sums | Exercises | p.744 |
11.4 | The Comparison Tests | Exercises | p.750 |
11.5 | Alternating Series | Exercises | p.755 |
11.6 | Absolute Convergence and the Ratio and Root Tests | Exercises | p.761 |
11.7 | Strategy for Testing Series | Exercises | p.764 |
11.8 | Power Series | Exercises | p.769 |
11.9 | Representations of Functions as Power Series | Exercises | p.775 |
11.10 | Taylor and Maclaurin Series | Exercises | p.789 |
11.11 | Applications of Taylor Polynomials | Exercises | p.798 |
Concept Check | p.802 | ||
True-False Quiz | p.802 | ||
Review Exercises | p.803 | ||
Problems Plus | p.805 |
Chapter 12
Vectors And The Geometry Of Space
12.1 | Three-Dimensional Coordinate Systems | Exercises | p.814 |
12.2 | Vectors | Exercises | p.822 |
12.3 | The Dot Product | Exercises | p.830 |
12.4 | The Cross Product | Exercises | p.838 |
12.5 | Equations of Lines and Planes | Exercises | p.848 |
12.6 | Cylinders and Quadric Surfaces | Exercises | p.856 |
Concept Check | p.858 | ||
True-False Quiz | p.858 | ||
Review Exercises | p.859 | ||
Problems Plus | p.861 |
Chapter 13
Vector Functions
Calculus Of A Single Variable 8th Edition Worked Out Solutions
13.1 | Vector Functions and Space Curves | Exercises | p.869 |
13.2 | Derivatives and Integrals of Vector Functions | Exercises | p.876 |
13.3 | Arc Length and Curvature | Exercises | p.884 |
13.4 | Motion in Space: Velocity and Acceleration | Exercises | p.894 |
Concept Check | p.897 | ||
True-False Quiz | p.897 | ||
Review Exercises | p.898 | ||
Problems Plus | p.900 |
Chapter 14
Partial Derivatives
14.1 | Functions of Several Variables | Exercises | p.912 |
14.2 | Limits and Continuity | Exercises | p.923 |
14.3 | Partial Derivatives | Exercises | p.935 |
14.4 | Tangent Planes and Linear Approximations | Exercises | p.946 |
14.5 | The Chain Rule | Exercises | p.954 |
14.6 | Directional Derivatives and the Gradient Vector | Exercises | p.967 |
14.7 | Maximum and Minimum Values | Exercises | p.977 |
14.8 | Lagrange Multipliers | Exercises | p.987 |
Concept Check | p.991 | ||
True-False Quiz | p.991 | ||
Review Exercises | p.992 | ||
Problems Plus | p.995 |
Chapter 15
Calculus ETF 5E
Multiple Integrals
15.1 | Double Integrals over Rectangles | Exercises | p.1005 |
15.2 | Iterated Integrals | Exercises | p.1011 |
15.3 | Double Integrals over General Regions | Exercises | p.1019 |
15.4 | Double Integrals in Polar Coordinates | Exercises | p.1026 |
15.5 | Applications of Double Integrals | Exercises | p.1036 |
15.6 | Surface Area | Exercises | p.1040 |
15.7 | Triple Integrals | Exercises | p.1049 |
15.8 | Triple Integrals in Cylindrical Coordinates | Exercises | p.1055 |
15.9 | Triple Integrals in Spherical Coordinates | Exercises | p.1061 |
15.10 | Change of Variables in Multiple Integrals | Exercises | p.1071 |
Concept Check | p.1073 | ||
True-False Quiz | p.1073 | ||
Review Exercises | p.1074 | ||
Problems Plus | p.1077 |
Chapter 16
Vector Calculus
16.1 | Vector Fields | Exercises | p.1085 |
16.2 | Line Integrals | Exercises | p.1096 |
16.3 | The Fundamental Theorem for Line Integrals | Exercises | p.1106 |
16.4 | Green's Theorem | Exercises | p.1113 |
16.5 | Curl and Divergence | Exercises | p.1121 |
16.6 | Parametric Surfaces and Their Areas | Exercises | p.1132 |
16.7 | Surface Integrals | Exercises | p.1144 |
16.8 | Stokes' Theorem | Exercises | p.1151 |
16.9 | The Divergence Theorem | Exercises | p.1157 |
Concept Check | p.1160 | ||
True-False Quiz | p.1160 | ||
Review Exercises | p.1161 | ||
Problems Plus | p.1163 |
Chapter 17
Second-Order Differential Equations
17.1 | Second-Order Linear Equations | Exercises | p.1172 |
17.2 | Nonhomogeneous Linear Equations | Exercises | p.1179 |
17.3 | Applications of Second-Order Differential Equations | Exercises | p.1187 |
17.4 | Series Solutions | Exercises | p.1192 |
Concept Check | p.1193 | ||
True-False Quiz | p.1193 | ||
Review Exercises | p.1193 |